1(a). Some diseases are multifactorial diseases. This means that many factors contribute to their cause. Cardiovascular disease is an example.

Age and gender are known risk factors for coronary heart disease.

The data in the table below shows the number of deaths from this disease in 2007 in the UK.

Age (years)	Number of deaths in males	Number of deaths in females
Under 35	129	27
$35-44$	783	183
$45-54$	2679	578
$55-64$	6687	1779
$65-74$	11335	4987

What can you conclude from the table about the effect of age and gender on the risk of death from cardiovascular disease?
\qquad
\qquad
\qquad
\qquad
(b).
(i) Many factors increase the risk of developing cardiovascular disease.

When Richard was a young boy, a section through a coronary artery (that supplies blood to the heart muscle) looked like this:

Richard has eaten a high fat diet for many years.

Complete the diagram below to show what Richard's coronary artery is likely to look like now:

(ii) Cigarette smoking can increase the risk of developing cardiovascular disease but does not necessarily lead to it.

Identify the type of correlation shown in the graph below.

(iii) Richard smoked 40 cigarettes a day and died of old age when he was 95 years old.

Explain why this cannot be used as convincing evidence of a correlation between the risk of smoking cigarettes and developing cardiovascular disease.
\qquad
\qquad
\qquad

2(a). Smoking cigarettes increases the risk of developing lung cancer.
This risk can be reduced by stopping smoking.

The graph shows the risk of developing lung cancer in people who have never smoked and people who have stopped smoking.

Look at the graph.
(i) What does the number <30 on the horizontal axis mean?
\qquad
(ii) Steve was 45 years old when he stopped smoking.

Write down his increase of percentage risk of developing lung cancer if he had waited until he was 55 years old.
increase of percentage risk $=$
(iii) Write down two different conclusions that can be made from looking at the graph.
\qquad
\qquad
(iv) The graph does not show the age at which people started smoking.

Suggest why this information is important when making conclusions from the graph.
\qquad
\qquad

(b). Smoking is an example of an unhealthy lifestyle choice.

Write down two other examples of an unhealthy lifestyle choice.
Explain why each lifestyle choice may cause health problems.

Lifestyle choice 1 \qquad
\qquad
Lifestyle choice 2 \qquad
\qquad
3. Swelling of the aorta is dangerous.

The swelling is called an aneurysm.

A swollen aorta can burst and usually results in death.

Men are screened to detect a dangerous swelling of the aorta.

The diameter of a healthy aorta is approximately 2 cm .

The diameter of the aorta was measured in two groups of men aged over 65.
The range of diameters of the aorta is shown in the graph for both groups.

It was decided to give the men in Group 2 surgery to repair the aneurysm. Men in Group 1 were not given surgery.

Look at the diagram and graph on the opposite page.

Discuss the decision to give surgery to the men in Group 2 but not to the men in Group 1. Use the data to support your answer.

The quality of written communication will be assessed in your answer.
\qquad
4. Neil is worried that he might have too much body fat and be overweight.

Here are some facts about Neil:

- his age is 43
- his body fat is 29%
- his mass is 90 kg
- his height is 1.7 m

Look at the formula, table and body fat chart below.

Body Mass Index $(\mathrm{BMI})=\frac{\text { body mass }(\mathrm{kg})}{[\text { height }(\mathrm{m})]^{2}}$

BMI	Category
<19	underweight
$19-24$	healthy weight
$25-29$	overweight
$30-40$	obese
>40	very obese

BODY FAT \% MEASUREMENT CHART FOR MEN

Should Neil be worried?
Use the information on the opposite page to explain your conclusion and suggest what action Neil should take.

The quality of written communication will be assessed in your answer.

5(a). Nikita wants to improve her fitness level.

She is interviewed by her fitness trainer before she starts her exercise programme.

Describe the questions her fitness trainer should ask and explain their importance.
The quality of written communication will be assessed in your answer.
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
(b). Her trainer sets a fitness test for Nikita.

Nikita takes a short test at the start of her fitness programme and repeatsthe test three months later. The graph shows her heart rate during these two tests.

One test is labelled \mathbf{A} and the other B .

(i) On the graph draw

- a short arrow labelled X to show when Nikita starts to exercise.
- a short arrow labelled Z to show when Nikita stops exercising.
(ii) How long did Nikita exercise during each test?
\qquad min
(iii) Which test, A or B, shows data for Nikita three months after she started her exercise programme?

Test \qquad

Explanation \qquad

6(a). Robert is worrying about his blood pressure.
He decides to measure his blood pressure every day.
Blood pressure consists of two readings.
Systolic pressure is when the heart muscle is contracting.
Diastolic pressure is when the heart muscle is relaxing.
The graph shows Robert's blood pressure taken over sixty days.

(i) Use the graph to find Robert's blood pressure readings on day 1.
systolic \qquad
diastolic \qquad
(ii) Robert looks at a chart about blood pressure readings.

Use this chart and your answer to part (i) to describe Robert's blood pressure on day 1.
Put a tick ($\boldsymbol{\checkmark}$) in the correct box.

	low	ideal	pre-high	high
Robert's blood pressure on day 1				

(b). At some point during the sixty days, Robert's doctor gave him some medicine to reduce his blood pressure. On which day do you think that Robert started to take his medicine?
day
(c). Robert's blood pressure changes from day to day.

Suggest one other reason why.
(d). Robert's average systolic blood pressure for the first seven days was 142.7 mm Hg . The table shows his systolic blood pressure for the last seven days.
(i) Complete the table by calculating Robert's average (mean) systolic blood pressure readings for the last seven days.

Day	Robert's systolic blood pressure in mm Hg
54	125
55	120
56	115
57	125
58	120
59	120
60	115
mean	

(ii) Suggest why scientists often calculate the mean of a set of data.
\qquad
(iii) Write down the range of systolic readings of Robert's blood pressure during the last seven days. from
to \qquad
(iv) Use the data to provide evidence that the medicine reduced Robert's blood pressure.
\qquad
\qquad
\qquad
7. Ian decides to join a running club.

At the first session, the instructor takes lan's resting pulse rate.

The instructor wants to work out how much blood the heart pumps out in a minute.

This is called cardiac output.

He uses this formula.
cardiac output $=$ pulse rate \times volume of blood pumped out per heart beat

The results for lan and three other members of the running club are shown in the table.

Name	Resting pulse rate in beats per minute	Volume of blood pumped out per heart beat in cm^{3}	Cardiac output in cm^{3} per minute
Alistair	80	75	6000
Byron	68	80	5440
Colin	71	70	4970
lan	75	92	

(i) Complete the table by calculating lan's cardiac output.
(ii) Write down the range of the cardiac output measurements for these members of the running club.

```
range =
```

\qquad to \qquad
(iii) The instructor says that resting pulse rate is a good indicator of the level of fitness.

The lower your resting pulse rate the fitter you are.

From the data, put the men in order of fitness from the least fit to the most fit.
least fit \qquad

most fit \qquad
(iv) The instructor thinks that the order of fitness may be incorrect.

Which two reasons, when taken together, explain why the order may be incorrect?

Put ticks (?) in the boxes next to the two most likely reasons.

Ian has only just joined the running club.

The measurements were only recorded once.

A person's pulse rate may vary.

Blood pressure measurements were not recorded.

The men had different diets.
\square
\square
\square

8(a). Jarinder wants to measure her fitness.
She does a fitness test.

She steps up and down on a box every two seconds for five minutes.
She then waits one minute after finishing the test and takes her pulse rate.
After a further one and two minutes she takes her pulse rate again.

These are her results.

	Pulse rate in beats per minute
1 minute after finishing test	114
2 minutes after finishing test	102
3 minutes after finishing test	90

Use this formula for calculating Jarinder's fitness number.

$$
\text { fitness number }=\frac{30000}{2 \times(\text { pulse rate } 1+\text { pulse rate } 2+\text { pulse rate } 3)}
$$

Show your working.
fitness number = \qquad
(b). The table shows how a person's fitness number relates to their actual fitness.

Use this table to determine Jarinder's actual fitness.

	Fitness				
Gender	Excellent	Above average	Average	Below average	Poor
Male	more than 90	$80-90$	$65-79$	$55-64$	less than 55
Female	more than 86	$76-86$	$61-75$	$50-60$	less than 50

Jarinder's fitness is \qquad
(c). Obtaining the fitness number and using the table may not precisely show how fit Jarinder is. Suggest reasons why.
\qquad
\qquad

9(a). A student examined this graph about heart disease.

It shows the deaths from heart disease in men and women, depending upon how much money they earned (income).

The student made the following conclusions.

Using only information from the graph, put ticks $(\boldsymbol{\checkmark})$ in the boxes next to the three correct conclusions.

With a very low income, women are certain to get heart disease. \square

In women, each time income is halved, the risk of heart disease is doubled. \square

Men are more at risk of heart disease than women.

With a high income, women are more at risk of heart disease than men.

There are other risk factors for heart disease apart from income. \square

No one with a high income gets heart disease. \square

For men, the lower the income the greater the risk of heart disease.

From middle to high income, the risk for women remains unchanged.
\square
(b). Which beginning, A, B, C or D, and which end, 1, 2, 3 or 4 , of a sentence, when put together, gives the best conclusion?

beginning

A	An outcome exists between a factor and a correlation ...
B	The study needs to be repeated ...
C	Low income increases the risk of heart disease ...
D	The right decision is the one that leads to the best outcome ...

end

$\mathbf{1}$	\ldots and proves the factor is a causal link.
$\mathbf{2}$	\ldots and this needs to be peer reviewed by other scientists.
$\mathbf{3}$	\ldots and includes the greatest number of people involved.
$\mathbf{4}$	\ldots but does not always lead to it.

answer \qquad and
10. Diabetes and cardiovascular disease are common diseases in the UK.

Ben is a middle-aged man with type 2 diabetes.

He is worried because he has heard that having type 2 diabetes will mean he also gets cardiovascular disease.

What advice would you give to Ben?
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTION PAPER

Question		Answer/Indicative content	Marks	Guidance	
1	a		Risk of death increases with age \boldsymbol{l} Risk is always greater in males \checkmark	2	

Question		Answer/Indicative content	Marks	Guidance
5	a	[Level 3] Includes several questions and several reasons for asking them. Quality of written communication does not impede communication of the science at this level. (5-6 marks) [Level 2] Includes some questions and reasons for asking them. Quality of written communication partly impedes communication of the science at this level. (3-4 marks) [Level 1] Includes only question. Quality of written communication impedes communication of the science at this level. (1-2 marks) [Level 0] Insufficient or irrelevant science. Answer not worthy of credit.	6	This question is targeted up to grade E List of questions may include: - any symptoms - current medication - alcohol consumption - tobacco consumption - level of physical activity - medical history / pregnant / injuries - family medical history - previous treatments - age - gender - BMI / mass / weight Reasons for asking questions may include: - to see if person is well enough to train - to prevent making any medical condition worse - to determine level of fitness - to produce an exercise plan / fitness regime - to avoid harm - to see if any other factors may affect the training plan Use the L1, L2, L3 annotations in Scoris; do not use ticks. Examiner's Comments Candidates were able to identify a number of questions that should be asked by fitness trainers prior to starting an exercise programme but found difficulties explaining their importance. This limited the majority of candidates to level one and two answers.

Question			Answer/Indicative content	Marks	Guidance
	b	i		1	Both correct for 1 mark Arrows / lines / labels within half a square Examiner's Comments This part was poorly answered with nearly half the candidates unable to interpret the data on the graph.
		ii	4;	1	ecf from b i Examiner's Comments The second part of the graph data interpretation question was better answered, error carried forward enabled many of the candidates to access this mark.
		iii	B (does not score) Because it is lower Because it returns to normal quicker	2	" A " scores zero marks Ignore 'less time to cool down' Examiner's Comments There was some confusion amongst candidates in this part of the question with many wrongly thinking that an improved fitness level would produce a higher heart rate
			Total	11	

Question			Answer/Indicative content			Marks	Guidance
6	a	i	155 95;			1	Both required for the mark Units not required Examiner's Comments Candidates answered this part well, the majority being able to accurately interpret the scale on the graph.
		ii	low \quad ideal	pre-high	high \checkmark	1	Examiner's Comments The majority of the candidates correctly interpreted the second chart, however some candidates used the diastolic value.
	b		27 to 35;			1	Examiner's Comments The wide range of acceptable days ensured that most candidates could accessthis mark.
	c		Idea of doing different activities / exercise / stress / salt / alcohol / smoking;			1	OWTTE Ignore medicine / diet / sugar Examiner's Comments There were a wide range of acceptable answers here, however a number of candidates failed to gain the mark by going down the diet route.
	d	i	$\begin{aligned} & 120 \text { (2); } \\ & 840 / 7 ; \end{aligned}$			2	$120=2 \text { marks }$ Examiner's Comments There was a disappointingly high number of candidates who were unable to calculate a mean.
		ii	Idea of best estimate of true / actual value; OR compare with other data / results / means;			1	Allow accurate value Ignore reference to outliers Ignore true results / accurate results Examiner's Comments The idea that the mean is the best estimate of the true value was known by very few candidates.

Question		Answer/Indicative content	Marks	Guidance		
	iii	$\begin{array}{l}115 ; \\ 125 ;\end{array}$	1	$\begin{array}{l}\text { Accept either way round } \\ \text { Units not required } \\ \text { Examiner's Comments }\end{array}$		
This section was answered well, most						
candidates able to interpret the data in						
order to obtain the range.					$]$	iv
:---						
Idea that blood pressure (systolic) is lower after answer to part b /between day $1 / 155$ to day 60 / 115 /between start and end /between first 7 days / 142.7 and last 7 days / 120; Ref to diastolic pressure also dropped at same time;						

Question		Answer/Indicative content	Marks	Guidance		
7						

Question		Answer/Indicative content	Marks	Guidance
8	a	$\begin{aligned} & 306(1) \\ & (306 \times 2) 612(1) \\ & 49(1) \end{aligned}$	3	49 alone scores 3 marks ignore decimal places Examiner's Comments It was pleasing to see that many candidates knew how to expand the brackets in this question and gain all three marks.
	b	poor	1	ecf from (a) if value in (a) is between 0 and 200 Examiner's Comments Most candidates gained this mark; their skill of making a conclusion from interpreting the table was generally good.
	c	any two from: measuring results will vary / inaccurate; idea that fitness score is in ranges and not a continuous score; other factors such as BMI / mass / weight / age / (short term) injury	2	Examiner's Comments Candidates rarely considered the idea that measuring pulse rates could cause problems or the idea that fitness was measured in ranges. Many candidates managed to suggest another suitable factor.
		Total	6	

Question			Answer/Indicative content		Marks	Guidance
9	a			\square r r	3	if more than three boxes are ticked deduct one mark for each additional tick Examiner's Comments This question required candidates to use the graph about heart disease to draw conclusions. Over half of the candidates knew at least 2 of the correct conclusions and stronger candidates knew all 3 .
	b		$\begin{aligned} & \mathrm{C} ; \\ & 4 \end{aligned}$		2	accept any unambiguous indications using lines on table Examiner's Comments This question was testing candidate's knowledge that correlation does not always prove causation in relation to the data given. Most candidates scoring 1 mark usually scored this for the beginning of the sentence "C".
			Total		5	

Question		Answer/Indicative content	Marks	Guidance
10		Any three from: having (type 2) diabetes increases his risk of cardiovascular disease / does not make it certain \checkmark example of lifestyle change to decrease his risk (of getting cardiovascular disease) \checkmark second example of lifestyle change to decrease his risk (of getting cardiovascular disease) \checkmark control/treat diabetes to reduce risk of developing cardiovascular disease \checkmark visit the doctor / get medical advice \checkmark	$\begin{gathered} 3(\mathrm{AO} 2.1 \\ \times 3) \end{gathered}$	ALLOW examples including, e.g. stop smoking / (more) exercise / low salt diet / low fat diet / take medication to reduce blood pressure / lower BMI DO NOT ALLOW "eat healthy/go on a diet" unless explained ALLOW idea of low sugar diet (to control diabetes) Examiner's Comments This question gave candidates the opportunity to demonstrate their knowledge of risk factors for cardiovascular disease (CVD). Many good responses focussed on aspects of lifestyle that would affect the risk of CVD. High-scoring responses were specific about lifestyle changes that would reduce the risk of CVD (e.g. reduce salt/fat in the diet, stop smoking, exercise more), while responses that relied on vague, catchall advice (e.g. stay healthy, eat healthily, go on a diet) were not credited marks. The idea that having type 2 diabetes increases the risk of CVD but does not make it certain, was rarely seen.
		Total	3	

